ID-2402

B. Sc. (Pass Course)

EXAMINATION, 2022

(Fifth Semester)

CHEMISTRY-I

Code : CH-501

Inorganic Chemistry

Time: 3 Hours

Maximum Marks : 29

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt any *Five* questions. All questions carry equal marks.

1. (a) State spin multiplicity rule.

- (b) What is Laporte rule?
- (c) Define intensity of magnetisation.
- (d) What is Curie's point ?
- (e) Colculate CFSE for tetrahedral complex.

Section A

- (a) On the basis of crystal field theory calculate spin only magnetic moment of:
 - (i) $[CoF_6]^{-3}$
 - (ii) $[Fe(CN)_6]^{-4}$
 - (b) Give the salient features of crystal field theory.
- (a) Discuss the splitting of d-orbitals of metal ion in octahedral complexes.
 - (b) Explain, why Ni⁺² form tetrahedral complex with CO whereas square planar with CN⁻?

Section B

- (a) Derive a relation between overall stability constant and stepwise stability constant.
 - (b) Explain thermodynamic and kinetic stability of complexes with example.
- 5. (a) Explain trans effect and trans directing ligands with example.
 - (b) What is log to How is it related to the stability of metal complexes? Explain with example.

Section C

- 6. (a) Discuss Gouy's method for measuring magnetic susceptibility.
 - (b) Calculate the magnetic moment μ_{L-S} for :
 - (i) Cr⁺³ (ii) Co⁺³ in absence of crystal field.

- (a) Explain spin and orbital contribution to the magnetic moments.
 - (b) Calculate expected magnetic moment in Bohr magneton for the following ions (spin magnetic moment only):
 - (i) Fe⁺³
 - (ii) Mn⁺²
 - (iii) Ni⁺².

Section D

- **8.** (a) Discuss the Orgel diagram and absorption spectra for d^1 system.
 - (b) Explain the following:
 - (i) No. of microstates for d¹ configuration
 - (ii) Term symbol for s^1p^1 and d^1s^1 .
- 9. (a) Why is KMnO₄ violet in colour while Mn does not contain any electron in d-orbital?
 - (b) Explain the following:
 - (i) Vibronic coupling
 - (ii) Term symbol for $3p^2$ configuration.